
Spin polarization of electron current through a potential barrier in two-dimensional structures

with spin–orbit interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 125801

(http://iopscience.iop.org/0953-8984/21/12/125801)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 18:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/12
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 125801 (6pp) doi:10.1088/0953-8984/21/12/125801

Spin polarization of electron current
through a potential barrier in
two-dimensional structures with
spin–orbit interaction
Yurii Ya Tkach, Vladimir A Sablikov and Aleksei A Sukhanov

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences,
Fryazino, Moscow District, 141190, Russia

Received 26 September 2008, in final form 30 December 2008
Published 26 February 2009
Online at stacks.iop.org/JPhysCM/21/125801

Abstract
We show that an initially unpolarized electron flow acquires spin polarization after passing
through a lateral barrier in a two-dimensional (2D) system with spin–orbit interaction (SOI)
even if the current is directed normally to the barrier. The generated spin current depends on the
distance from the barrier. It oscillates with the distance in the vicinity of the barrier and
asymptotically reaches a constant value. The most efficient generation of the spin current (with
polarization above 50%) occurs when the Fermi energy is near the potential barrier maximum.
Since the spin current in the SOI medium is not unambiguously defined, we propose to pass this
current from the SOI region into a contacting region without SOI and show that the spin
polarization loss under such transmission can be negligible.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Generation and manipulation of spin-polarized carriers in
semiconductor structures solely by electric methods is a key
problem of spintronics [1–3]. One of the widely studied
approaches to attain this goal is based on using spin–orbit
interaction (SOI). The SOI is known to produce the spin
polarization of electron current in layered tunnel structures.
The effect is caused by the Rashaba SOI at the barrier
boundaries of asymmetric structures [4] or by the Dresselhause
SOI in the barrier bulk [5–9]. A general property of such
structures is the absence of the spin polarization in the case
where the current is directed normally to the barrier. In other
words, a current component along a barrier should be created to
get a spin current. This limits the capability of these structures
to generate spin currents. Recently it has been found that two-
dimensional (2D) structures with a lateral barrier are free of
this restriction [10]. The electron current passing through the
barrier acquires spin polarization, which exceeds 50% even if
the current is directed normally to the barrier. However, in
the studied case the SOI exists only inside the barrier. Such
structures seem to be hardly realizable, since it is problematic

to localize the Rashba SOI within the lateral barrier, especially
if the latter is created by gate electrodes.

In the present work the research of [10] is generalized to
the case when SOI exists everywhere: in the potential barrier
and the surrounding electron gas. We find that high spin
polarization can also be achieved in such structures. However,
in this case two important questions arise concerning the
definition of the spin current and the existence of equilibrium
spin currents in a 2D electron gas with SOI [11]. They
provoked recently a wide discussion [12–15]. As regards
the existence of equilibrium spin currents, this question is
not essential for the barrier structures considered here for the
following reason. The equilibrium spin current is known to be
generated only within a narrow energy layer −Eso < E < 0,
where E is electron energy and Eso is a characteristic energy
of SOI [11]. If the barrier height U considerably exceeds Eso,
the barrier transparency for electrons in this energy layer is
negligibly small.

The problem of the spin current definition can be
overcome by calculating an observable physical quantity,
which is well defined and closely related to the spin flow in
SOI medium. This could be a spin current in a normal 2D
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electron gas (without SOI), which is brought into contact with
the SOI structure under consideration. In other words, it is
reasonable to explore a structure in which the spin current
generated in the SOI region passes into a normal region
where spin current is unambiguously defined. One can say
that this region is designed to simulate, at least partially, a
measuring process. With this in mind we study the spin
current transformation when electrons pass through a contact
between SOI and normal 2D regions, and find conditions under
which this transformation occurs practically without loss of
spin polarization.

Finally we have found that the barrier in the 2D electron
system with the SOI allows one to generate electron current
with spin polarization exceeding 50% and this spin current can
be transferred into a normal 2D electron gas with minimal loss.

2. Basic wavefunctions and energy spectrum

The structure to be studied here is a sheet of 2D electron
gas with Rashba SOI separated by a potential barrier into
two semiplanes (reservoirs) between which a small voltage
V is applied. We are going to find electron and spin
currents through the barrier, but begin with a discussion of
wavefunctions for the whole system. The system is described
by the Hamiltonian:

H = p2
x + p2

y

2m
+ α

h̄
(pyσx − pxσy)+ U(x), (1)

where px,y are components of electron momentum, α is the
SOI parameter, σx,y the Pauli matrices and U(x) the barrier
potential. We consider here a rectangular barrier of height U
and width d: U(x) = U at 0 < x < d and U(x) = 0 at x < 0
and d < x . The effective mass is supposed to be independent
of the coordinates.

Wavefunctions in the barrier and reservoirs are presented
in the form of a linear combination of basic eigenfunctions of
homogeneous 2D electron gas with SOI

�k,s =
∑

s ′

[
Ass ′,keikxs′ x

(
χs ′(k)

1

)

+ Bss ′,k̄e−ikxs′ x

(
χs ′(k̄)

1

)]
eiky y, (2)

where s is the spin index, k = (kxs , ky) is the wavevector,
k̄ = (−kxs , ky). The wavevector component kxs is different
for the barrier and the reservoirs. In addition it depends on
the spin. In contrast the component ky is a conserved quantity
and hence it is the same for all regions in a given state. The
eigenfunctions and energy spectrum of homogeneous electron
gas were studied in detail in [10]. The main results which
will be used below, are the following. Since the considered
system is not translationally invariant in the x direction, the
wavevector component kxs can be complex: kx = k ′

x + ik ′′
x . In

contrast, ky is always real. The total spectrum includes three
spin-split branches (see figure 1).

(1) The first branch 1± corresponds to propagating states
(k ′′

x = 0) with energy:

ζk,s = −a2 +
(

a + s
√

k2
y + k ′2

x

)2
, (3)

Figure 1. Complex band structure of the 2D electron gas with SOI.
Energy branches 1±, 2± are shown as functions of k ′

x and k ′′
x . Branch

3 is defined along real energy trajectories in a complex plane
(k ′

x , k ′′
x ); only one branch located in the quadrant (k ′

x , k ′′
x > 0) is

represented. Panels a and b correspond to cases ky < a and ky > a.

and spin function:

χs(k) = s(ky + ik ′
x)√

k2
y + k ′2

x

, (4)

where ζk,s = 2Ek,sm/h̄2, Ek,s is the electron energy,
a = mα/h̄2 is the characteristic wavevector of the SOI,
and ζso = a2 corresponds to the characteristic energy,
Eso = h̄2a2/2m.

(2) The second branch 2± exists when ky �= 0, in the energy
gap between branches 1+ and 1−. These states decay
monotonously with x and hence k ′

x = 0. The energy and
spin functions are defined by equations (3) and (4), where
k ′

x must be replaced by ik ′′
x .

(3) The third branch lies below the two above considered
branches, ζk,s < −a2. It is defined for real energy
trajectories in the complex plain (k ′

x, k ′′
x ):

k ′2
x k ′′2

x + a2(k2
y + k ′2

x − k ′′2
x )− a4 = 0. (5)

The energy and spin functions for this branch are

ζk,s = −a2 − k ′2
x k ′′2

x

a2
, (6)

χs(k) = −a
ky − k ′′

x + ik ′
x

a2 + ik ′
xk ′′

x

. (7)

Note that at any given energy and ky , there are four
eigenstates. In the case of the first and second branches,
the different eigenstates correspond to different signs of s
and k ′

x or k ′′
x . For the third branch the eigenstates differ by

signs (±) of k ′
x and k ′′

x .

3. Spin-polarized current through a barrier

We now turn to the calculation of electron and spin currents
flowing normally to the barrier. For simplicity suppose that
the 2D electron reservoirs to the left and right of the barrier
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Figure 2. Energy diagram of the barrier structure. Lines 1±, 2±, 3
represent the spectrum branches described in the text. In the inset:
full semirings in the (kx , ky) space which are occupied by electrons
contributing to the current.

are equipotential and the potential difference V is small as
compared to all characteristic energies of the system. The
electron states contributing to the current are located in the
energy interval of eV width near the Fermi energy EF. In
the (kx, ky) space, they occupy two semirings corresponding
to electrons with opposite spins (figure 2). The currents are
determined by the summation of partial currents over these
states [16, 17]. Using variables ζ and ky one finds

J (ζF) = eV

8π2

∑

s

kF,s√
ζF + a2

∫ kF,s

−kF,s

dky√
k2

F,s − k2
y

j(ζF, ky, s),

(8)
where ζF = 2m EF/h̄2, kF,s is defined by the equation:

ζF = −a2 + (a + skF,s)
2, (9)

and j (ζF, ky, s) is the partial current in the eigenstate
|ζF, ky, s〉.

The current j (ζF, ky, s) is calculated using the wavefunc-
tions defined in equation (2) as a linear combination of basic
eigenfunctions, the set of four eigenfunctions being different
for the barrier and reservoirs as well as the spectrum there. The
selection of basic eigenfunctions from all three space regions
and all spectrum branches to form the total wavefunction cor-
responding to a given energy ζ and transverse momentum ky

is an intricate problem. Its solution is summarized in the di-
agram shown in figure 3. There are 12 regions on the plane
(ζ, ky). The regions are bounded by four curves, 1–4, which
are determined by the equations:

ky =
√
ζ + a2 ∓ a, (10)

ky =
√
ζ − u + a2 ∓ a, (11)

where u = 2mU/h̄2.
In each region a specified set of four eigenfunctions to be

used in forming the total wavefunction is indicated. The list
of these regions and corresponding eigenfunction sets for the
reservoirs and the barrier are the following:

Figure 3. The distribution of the basic eigenfunctions in the plane of
parameters (ζ, ky) for the reservoirs (R) and the barrier (B). The
inner borders (lines 1, 2, 3) determine the regions with different sets
of four eigenfunctions. Thick lines 4 and 5 are external borders
outside of which no propagating states exist. One more border,
closing the region of the states accessible for electrons, is the Fermi
energy ζF. The dashed line at ζ1 corresponds to an example
considered in the text.

(1) For the reservoirs: R1 is the region without propagating
states; R2 contains two waves of spectrum branch 1−,
which are incident on the barrier, and two waves of
branch 1−, which are reflected. For brevity we depict
this schematically as follows: R2—(⇒ 1−,⇔ 1−). The
arrows designate the right- and left-moving waves, the
number of arrows specifies the number of waves, and
the figures behind them indicate the spectrum branches
they belong to in accordance with figure 1. Using these
notations, other regions are imaged as: R3—(→ 1−,←
1−,← 2−); R4—(→ 1−,→ 1+,← 1−,← 1+); R5—
(→ 1−,← 1−,← 2+).

(2) For the barrier: B1 contains four modes of branch 3; B2—
four modes of branch 1−; B3—two modes of 1− and two
modes of 2−; B4—four modes of 2−; B5—four modes of
1+; B6—two modes of 1+ and two modes of 2+; B7—four
modes of 2+.

Figure 3 helps us to find the eigenfunction sets forming
the total wavefunction for a given energy ζ1. It is necessary
to draw a vertical line ζ = ζ1. The regions that it crosses
show the eigenfunction sets according to the above list. If
this line crosses more than one region, the integration interval
in equation (8) is divided into parts corresponding to its
intersection points with internal lines.

As an example, let us describe the tunneling of electrons
with energy E < U − Eso. If an electron falls on the
barrier from the left reservoir in the state |kx,s , ky, s〉, the
wavefunction in this reservoir, x < 0, is

|ψ(L)kxs ,ky ,s
〉 = |kxs , ky, s〉 +

∑

s ′
rss ′ |−kxs ′ ky, s′〉, (12)

where eigenstates |−kxs , ky, s〉 are those from regions R4 and
R5.

The wavefunction of electrons transmitted to the right
reservoir, x > d , is

|ψ(R)kxs ,ky ,s
〉 =

∑

s ′
tss ′ |kxs ′ , ky, s′〉. (13)

Here rss ′ and tss ′ are the reflection and transmission matrices.
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The wavefunctions in the barrier are formed by the
eigenfunctions of ‘oscillating’ evanescent states (region B1 in
figure 3):

|ψ(B)kxs ,ky ,s
〉 =

∑

λλ′
bs
λλ′ |λK ′

x , λ
′ K ′′

x , ky〉, (14)

where K ′
x and K ′′

x are the real and imaginary parts of the
wavevector Kx , λ, λ′ = ±1.

Matrices rss ′ , tss ′ and bs
λλ′ are defined by an equation set

which follows from the boundary conditions [10, 18, 19]:

ψ
∣∣0+
0−

= ψ
∣∣d+
d−

= 0,
[
∂ψ

∂x
+ βkyσzψ

]

0−
= ∂ψ

∂x

∣∣∣∣
0+
,

∂ψ

∂x

∣∣∣∣
d−

=
[
∂ψ

∂x
− βkyσzψ

]

d+
.

(15)

Here the parameter β = 2Ua/eFz describes the Rashba SOI
caused by a lateral electric field at the edges of the barrier, Fz is
an electric field normal to the 2D layer. The SOI constant in the
boundary condition disappears because the SOI constants are
equal all over the sample and the wavefunctions are continuous
at the boundaries. The total equation system for the matrices
tss ′ , rss ′ and bs

λλ′ is obtained from the boundary conditions
for both spin states of incident electrons. Thus, one obtains
two systems of eight equations each. They are to be added
by an equation establishing a relation between wavevectors
kx,s and Kx . This equation follows from the requirement
that the energy is the same in the reservoirs and the barrier:
ζ(kxs , ky, s) = u + ζ(Kx , ky).

Now we proceed with the calculation of the charge and
the spin currents. Using equation (13), one finds the electron
current:

j (kxs,ky ,s) = 2h̄|C|2
m

∑

s ′

[
kxs ′ − ia

2
(χs ′ − χ∗

s ′)

]
|tss ′ |2. (16)

The spin current is supposed to be defined by the standard
expression [16, 17]:

j j
s,i = h̄

4
〈υiσ j + σ jυi 〉, (17)

where i = (x, y) designates the current components in
the plane, j = (x, y, z) designates the spin polarization
components, υi is the electron velocity component.

The calculation of the spin current in the right reservoir
for the state |ψ(R)kxs ,ky ,s

〉 results in the following expressions for
the x component:

j x,y,z
s,x = h̄2|C|2

4m
Y x,y,z

s,x , (18)

where Y x,y,z
s,x has the following components:

Y x
s,x = 2

∑

s ′
kxs ′ |tss ′ |2Reχs ′ + (kxs + kxs̄ )

× [(χs + χ∗
s̄ )ts,s t∗

s,s̄ei(kxs−kxs̄ )x + c.c.]/2, (19)

Figure 4. Dependence of the spin polarization of electron current on
the distance from the barrier. The used parameters are
EF/Eso = 7.99, U/Eso = 9, ad = 3, β = 0.

Y y
s,x = 2

∑

s ′
kxs ′ |tss ′ |2 Imχs ′ + i(kxs + kxs̄)[(χs − χ∗

s̄ )

× ts,s t∗
s,s̄ ei(kxs −kxs̄ )x − c.c.]/2 − 2a

∑

s ′
|tss ′ |2

− a[ts,s t∗
s,s̄(χsχs̄ + 1)ei(kxs −kxs̄ )x + c.c.], (20)

Y z
s,x = (kxs + kxs̄)[ts t∗

s̄ (χs + χ∗
s̄ )e

i(kxs −kxs̄ )x + c.c.]/2. (21)

Here s̄ designates the spin opposite to s.

The total spin current is

J x,y,z
s,x (ζF, x) = eV

8π2

∑

s

kF,s√
ζF + a2

×
∫ kF,s

−kF,s

dky√
k2

Fs − k2
y

j x,y,z
s,x (ζF, ky, s, x). (22)

Straightforward calculations show that the spin current
components with polarization along x and z directions are
absent, J x

s,x = J z
s,x = 0. Only the y component of the spin

polarization is present in the spin current J y
s,x �= 0, just as

in the case of SOI absence in the reservoirs [10]. The spin
current depends on the distance from the barrier. Near the
barrier, J y

s,x oscillates with a period of about π/a around a
slowly varying value. The oscillation amplitude decreases with
distance and the spin current asymptotically reaches a constant
value, as shown in figure 4. The oscillation is caused by the
interference of spin-split propagating states whose wavevectors
differ by a value of the order of a. An electron incident on
the barrier with definite spin appears behind the barrier in a
state which is a superposition of wavefunctions with different
chiralities and wavevectors. Their interference results in the
spin current oscillations. At large distances from the barrier
the interference pattern is smeared because the partial spin
current oscillations lose their coherence due to the dispersion
of longitudinal wavevectors kx of incident electrons. The
asymptotic behavior of the spin current can be presented as

J y
s,x(ζF, x) 
 J y

s,x(ζF,∞)+ A(ζF)
cos[2ax + ϕ(ζF)]√

x
.
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Figure 5. Spin polarization of the current as a function of Fermi
energy for two barrier thicknesses: ad = 3 (line 1), ad = 8 (line 2).
The parameters used are U = 9Eso, β = 0.

The degree of current spin polarization is quantitatively
described by the spin-to-charge current ratio:

P(ζF) = 2

h̄

J y
s,x(ζF,∞)

J (ζF)
. (23)

The polarization P(ζF) calculated as a function of the Fermi
energy for two thicknesses of the barrier d is presented in
figure 5. The largest spin polarization is seen to arise when
the Fermi level lies close to the barrier maximum in an energy
interval of the order of several Eso. This dependence is similar
to that of the case where the SOI is absent in reservoirs [10].
This polarization exists at large distances from the barrier. An
essential point is that due to the oscillation in the vicinity of
the barrier, P can by higher or lower than the asymptotic value
shown in figure 5.

The obtained results depend only weakly on the parameter
β , describing the interface SOI. With increasing β in the
range 0–0.1, the general view of the P(ζF) dependence
remains unchanged, but the degree of spin current polarization
insignificantly increases. So, P(ζF) increases by 7% as β
changes from 0 to 0.1.

4. Spin current transformation in the contact of SOI
and normal regions

In a 2D electron gas with SOI, the spin current is known to be a
nonconserved quantity and therefore its definition is somewhat
arbitrary. For this reason an important question arises as to
what quantity is really measurable. In this paper we propose to
transfer the spin current from the SOI system into a normal 2D
electron gas without SOI where the spin current is well defined
and measurable [20–23]. To carry out this transformation, a
normal region should be brought into lateral contact with the
SOI system considered before. Thus, it is reasonable to extend
the discussed system by adding a contact with a normal region,

which simulates (at least partially) a measuring device. The
key problem to be solved is to find out how the spin current is
transformed while passing through this contact.

The problem is stated as follows. Let a monoenergetic
electron flow be incident from the SOI region on a sharp
boundary with a normal region. The spin polarization
of incident electrons is determined by a non-equilibrium
occupancy of spin states at the Fermi level, which is
characterized by distribution functions of the states with
positive and negative chiralities, f+(k+) and f−(k−), with k±
being the Fermi wavevectors for the spin-split subbands. One
needs to calculate the output spin current in the normal region
as a function of the spin polarization of the incident current.
This problem is solved in the same way as in the previous
section. Therefore, we describe below the key results without
going into detail.

Let us consider a simplified case where the distribution
functions f+(k+), f−(k−) are nonzero only for the states with
positive velocity and do not depend on the momentum in this
sector of the Fermi surface, i.e. f±(k) = f±θ(kx). The ratio
of spin-subband populations determines the degree of spin
polarization of the incident electron flow. It is easy to show
that

P(in) = π

4

ζF√
ζF + a2

f+ − f−
k+ f+ + k− f−

, (24)

where
k± = ∓a +

√
ζF + a2,

the spin polarization being directed along the y axis.
Note that far from the contact in the SOI region the

spin current does not depend on the coordinate x , since
electrons occupy the states with well defined spin. Near to
the contact, but before it, the situation changes essentially
because the electrons having been reflected from the contact
find themselves in a superposition of states with different spin.
This results in an interference pattern in the spatial distribution
of the spin current density similar to that shown in figure 4.
Behind the contact, in the normal region, the spin current does
not depend on the coordinate since it is a conserved quantity.

The spin polarization of the output current P(out) is defined
similarly to equation (23) as the ratio of the transmitted spin
current to the particle current. Of interest is the relation
between the output polarization, P(out), and the input one,
P(in). The input polarization is changed by varying the
spin-subband population according to equation (24). We
calculate the output and input polarizations while varying
( f+ − f−)/( f+ + f−) to find a dependence of Pout on P in.
This dependence is determined by the Fermi energy EF and
the potential step height Uc at the contact between the SOI and
normal regions. We find that the efficiency of the spin current
transformation when transferring through the contact increases
with the decrease in Uc. This means that the scattering
on the contact contributes to the output polarization. The
dependences of P(out) on P(in) are shown in figure 6 for the
most favorable case when Uc = 0. They are nearly linear.
Thus, if EF  Eso,Uc, the spin current passes from the SOI
region to normal electron gas practically without polarization
loss.

5
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Figure 6. Dependence of the output spin polarization P(out) in the
normal region on the input polarization P(in) in the SOI region in the
case of Uc = 0 for different Fermi energies (lines 1, 2, 3). Line 4
shows the result in the case where the distribution function of
incident electrons fills the sector (kx > 0, |ky | � 2a) on the Fermi
surface. The symbols mark the points at which ( f+ − f−)/( f+ + f−)
increases from −1.0 to 1.0 in steps of 0.2, moving from left to right.
Inset: the energy diagram of the structure.

Let us address the problem of the spin polarization of
the electron current through a barrier studied in the previous
section. The largest polarization is reached at EF ∼ U .
Therefore, if U  Eso,Uc, the spin is transferred into the
normal 2D gas almost completely even if the distribution
functions are uniformly smeared over the semi-circle as in
the calculation of this section (see lines 1–3 in figure 6).
In reality, the spin transfer efficiency is higher since the
distribution function of transmitted electrons f±(k) is strongly
non-uniform over the azimuthal angle. This occurs because the
probability for an electron to pass through the potential barrier
decreases with increasing |ky|. One can say that electrons are
focused by the barrier near to the x axis. If the energy is close
to the barrier top, the characteristic scale of the decrease of
f±(k) with ky is of the order of 2a. We model this situation
by calculating the polarization of the output current in the
case where only the states in sector kx > 0, |ky| � 2a
are filled. The result is presented by line 4 in figure 6. Of
course, the scattering processes in the bulk reduce the spin
polarization because they cause the distribution function to be
more isotropic.

5. Conclusions

Electron transport through a lateral potential barrier in a 2D
system with SOI produces considerable spin polarization of
the current, with the spin being directed perpendicularly to the
current. Behind the barrier the outgoing spin current depends
on the distance in an oscillatory manner, but at sufficiently
large distance from it the oscillations decay and the spin current
reaches a constant value. The most effective generation of the

spin current occurs when the Fermi energy is close to the top of
the potential barrier. The maximum degree of polarization at
a distance far from the barrier exceeds 50%. The spin current
generated in the 2D electron gas with SOI can be successfully
transmitted to a contacting normal 2D electron gas where the
spin current is unambiguously defined. The spin polarization
loss occurring while electrons pass from the SOI region to the
normal electron gas is negligible if the contact potential step
and the characteristic SOI energy are small compared to the
barrier height and the Fermi energy.
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